anonymous
  • anonymous
hi advance question related to definite integral , i know how to do it but just not sure ?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
i do know answer for i and ii
UnkleRhaukus
  • UnkleRhaukus
what were these results you got for (i) and (ii)?
anonymous
  • anonymous
i is just show that

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
and ii , I got -1
anonymous
  • anonymous
@ganeshie8
anonymous
  • anonymous
i dunno how to expand it properly
anonymous
  • anonymous
i have done my solution
anonymous
  • anonymous
but not sure
ganeshie8
  • ganeshie8
Looks good, In the last line, maybe just leave the answer in exact form : \[\dfrac{\lim\limits_{n\to\infty}~~e^{1/n}(1-e)}{\lim\limits_{n\to\infty}~~n(1-e^{1/n)}}=\dfrac{1(1-e)}{-1}=e-1\]
anonymous
  • anonymous
ok thank u appreciate it @ganeshie8
ganeshie8
  • ganeshie8
np :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.