idku
  • idku
a question about statistics.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
idku
  • idku
The list X of ten numbers has a mean of 20, and population SD, \(\color{black}{{\LARGE \sigma}_X}\) equal to 5. THEN, Someone comes and claims that \(40\) is the maximum on this list X. (My task is:) `Show why this is impossible (i.e. why 40 can't be the maximum on the list). `
idku
  • idku
\(\color{black}{\sqrt{\dfrac{(40-20)^2+R}{10}}=6}\) where R is the sum of all remaining component of the Standard deviation. R=(\(X_2\) - 20)\(^2\)+(\(X_3\) - 20)\(^2\)+(\(X_4\) - 20)\(^2\)+(\(X_5\) - 20)\(^2\)+(\(X_6\) - 20)\(^2\)+(\(X_7\) - 20)\(^2\) where it is obvious that \(R\ge0\), thus: \(\color{black}{\sqrt{\dfrac{(20)^2+R}{10}}=6}\) \(\color{black}{\sqrt{\dfrac{400+R}{10}}=6}\) \(\color{black}{\sqrt{\dfrac{400+R}{10}}>6}\) knowing the restriction for R
idku
  • idku
oh my SD is 5, not 6. But then it certainly works.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

idku
  • idku
done I guess:)

Looking for something else?

Not the answer you are looking for? Search for more explanations.