a1234
  • a1234
y = -3 cos ((x/3) + (pi/7). Find the period. Is it 3pi?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
For a function of a wave, \[f(x)=A\cos(Bx+C)\] The period of the wave is given \[T=\frac{2\pi}{B}\]
anonymous
  • anonymous
Think of it as anologous to equation of time-varying displacement of a wave \[y(t)=A\cos(\omega t+\alpha)\] \[\omega\] is the angular frequency, and we know that \[\omega=\frac{2\pi}{T}\]\[\implies T=\frac{2\pi}{\omega}\]
a1234
  • a1234
But what is w in this case?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
\[f(x)=-3\cos(\frac{1}{3}x+\frac{\pi}{7})\] Compare it to \[f(x)=A\cos(Bx+C)\] What do you think your B is?
a1234
  • a1234
1/3?
anonymous
  • anonymous
yep! now your job is as simple as finding \[T=\frac{2\pi}{B}\]
a1234
  • a1234
That would be 6pi
anonymous
  • anonymous
Absolutely, solved!
a1234
  • a1234
Thanks!

Looking for something else?

Not the answer you are looking for? Search for more explanations.