Describe the relationships between the graphs of f and g. Think about amplitudes, periods, and shifts. f(x) = cos4x g(x) = -2 + cos4x a. g(x) is 2 units down compared to f(x). b. The period of g(x) is twice of that of f(x). c. g(x) is a vertical shift of 2 units downward.

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Describe the relationships between the graphs of f and g. Think about amplitudes, periods, and shifts. f(x) = cos4x g(x) = -2 + cos4x a. g(x) is 2 units down compared to f(x). b. The period of g(x) is twice of that of f(x). c. g(x) is a vertical shift of 2 units downward.

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

i am here to save the day!
ok...
lol just kidding i have no idea how to solve this @mitchal

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

b isn't true. f and g have the same period
\(\textit{function transformations} \\ \quad \\ \begin{array}{llll} \begin{array}{llll} shrink\ or\\ expand\\ by\ {\color{purple}{ A}}\cdot {\color{blue}{ B}}\end{array} \qquad \begin{array}{llll} vertical\\ shift\\ by \ {\color{green}{ D}} \end{array} \begin{array}{llll}{\color{green}{ D}} > 0& Upwards \\ \quad \\ {\color{green}{ D}} < 0 & Downwards\end{array} \\ \qquad \downarrow\qquad\qquad\quad\ \downarrow\\ % template start f(x) = {\color{purple}{ A}} ( {\color{blue}{ B}}x + {\color{red}{ C}} ) + {\color{green}{ D}}\\ % template ends \qquad\qquad\quad\ \uparrow \\ \qquad\begin{array}{llll} horizontal\\ shift\\ by \ \frac{{\color{red}{ C}}}{{\color{blue}{ B}}}\end{array} \begin{array}{llll}\frac{{\color{red}{ C}}}{{\color{blue}{ B}}} > 0 & to\ the\ left \\ \quad \\ \frac{{\color{red}{ C}}}{{\color{blue}{ B}}} < 0& to\ the\ right\end{array} \end{array}\\ -----------------------------------\\ \bf f(x)=cos({\color{blue}{ 4}}x)\qquad \qquad g(x)=-2+cos({\color{blue}{ 4}}x)\iff g(x)=cos({\color{blue}{ 4}}x){\color{green}{ -2}}\)
y = a cos b(x - c)) + d a = amplitude b = (2π)/period c = phase shift d = vertical shift
Is it c? But then what's the difference between c and a?
Hmmm tricky question... my guess would be that it isn't c because they didnt specify what it was shifted down from. Presumably they mean the origin, but because they didn't say it is ambiguous whereas a specifies the magnitude of the shift and gives a reference from where the pellet occurs
And since both amplitude and period are equal (with no phase difference) then at all points g(x) will be the exact same graph as f(x) only shifted downward by 2

Not the answer you are looking for?

Search for more explanations.

Ask your own question