A sequence {an} is defined recursively, with a1 = -1, and, for n > 1, an = an-1 + (-1)n. Find the first five terms of the sequence. A) -1, 0, 1, 2, 3 B) -1, -2, -3, -4, -5 C) -1, 0, -1, 0, -1 D) -1, 1, -1, 1, -1

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

A sequence {an} is defined recursively, with a1 = -1, and, for n > 1, an = an-1 + (-1)n. Find the first five terms of the sequence. A) -1, 0, 1, 2, 3 B) -1, -2, -3, -4, -5 C) -1, 0, -1, 0, -1 D) -1, 1, -1, 1, -1

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

\(\large a_1 = -1\) and for \(\large n>1\) \(\large a_n = a_{n-1} + (-1)^n\) Like that?
I'm just seeing if I wrote it correctly as you have on your paper?
yeah thats right

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Okay So we know the first term is -1...we are given that...so \(\large a_1 = -1\) Now for \(\large a_2\) since we are now > 1 ...we use that equation \[\large a_n = a_{n-1} + -1^n\] So for n= 2 *the second term \[\large a_2 = a_{2-1} + -1^2\] \[\large a_2 = a_1 + -1^2\] We know \(\large a_1\) = -1 so we can replace that \[\large a_2 = -1 + -1^2\] What is -1^2? -1 * -1 = 1 right? so \[\large a_2 = -1 + 1 = ?\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question