• anonymous
Could use some help getting started with this question. Thanks
  • Stacey Warren - Expert
Hey! We 've verified this expert answer for you, click below to unlock the details :)
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
  • schrodinger
I got my questions answered at in under 10 minutes. Go to now for free help!
  • anonymous
The steel ingot shown in Fig. 2 has a mass of 1800 kg. It travels along the conveyor at a speed v = 0.5 m/s when it collides with the nested spring assembly. Determine the maximum deflections in each spring needed to stop the motion of the ingot, if kA = 5 kN/m and kB = 3 kN/m.
1 Attachment
  • IrishBoy123
when it stops, the KE of the ingot will temporarily be stored as PE in the springs, and generally speaking we can say \(PE = \frac{1}{2}kx^2\) here you will have different extensions (NB read: compressions) as the springs are staggered [we assume that the first spring will not stop the ingot in 0.1m but you can check that first if you like thus we combine energy in the springs for a general extension x as \(PE = \frac{1}{2} \left[ k_a x^2 + k_b (x-0.1)^2\right]\) hopefully \(x \lt 0.5\) or something is broken....

Looking for something else?

Not the answer you are looking for? Search for more explanations.