A community for students.

Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing


  • one year ago

I tried getting help in the engineering section, but no one's around to help, apparently, so I'll just copy/paste my question here. I've gotten about halfway through this one question and I'm a little confused as to what to do next. Is there anyone out there who can help me? The question is thus; "The motion of a particle is defined by the equations and x=(2t+t2)m and y=(t2)m, where t is in seconds. Find v_n, v_t, a_n and a_t where (t=2) seconds."

  • This Question is Closed
  1. anonymous
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 0

    I've already found v_n and v_t, I want to know how to obtain a_n and a_t. I know the general equation for polar acceleration, but it doesn't seem to be all that applicable here. So I've been working on this problem for awhile. Just to prove that I'm not trying to be lazy, I'll explain how I found v_n and v_t. The definition of velocity is that it is tangent to the position curve. Theregore, there can BE no normal velocity vector. Thus, v_n = 0. As for v_t, that is just velocity times the unit tangent vector. To find this, I derive the x and y components of the position vector, and then plug in the value t= 2, from which I then calculate the magnitude of the velocity. This gets me v_t = 7.21 m/s.

  2. anonymous
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 0

    I figured I could try the physics section here since this Dynamics problem is essentially based on kinematics, anyway.

  3. Not the answer you are looking for?
    Search for more explanations.

    • Attachments:

Ask your own question

Sign Up
Find more explanations on OpenStudy
Privacy Policy

Your question is ready. Sign up for free to start getting answers.

spraguer (Moderator)
5 → View Detailed Profile

is replying to Can someone tell me what button the professor is hitting...


  • Teamwork 19 Teammate
  • Problem Solving 19 Hero
  • You have blocked this person.
  • ✔ You're a fan Checking fan status...

Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.

This is the testimonial you wrote.
You haven't written a testimonial for Owlfred.