steve816
  • steve816
Determine whether this function is even or odd
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
steve816
  • steve816
\[h(x)=\frac{ -x^3 }{ 3x^2-9 }\]
FireKat97
  • FireKat97
Use these two rules- if h(x) = h(-x) the function is considered even. if -h(x) = h(-x) the function is considered odd.
steve816
  • steve816
I plugged in -x and got neither. Is that right?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

FireKat97
  • FireKat97
so what exactly did you get when you plugged in -x?
steve816
  • steve816
\[h(x)=\frac{ x^3 }{ 3x^2-9 }\]
FireKat97
  • FireKat97
okay and now try and find the function -h(x)
steve816
  • steve816
\[h(x)=\frac{ -x^3 }{ -3x^2+9 }\]
FireKat97
  • FireKat97
No, when you multiply by a negative, you don't have to multiply both the numerator and denominator by the negative. So in this case, you should get \[-\frac{ -x^3 }{ 3x^2 -9}\] and the two negatives should cancel so you get left with \[\frac{ x^3 }{ 3x^2-9 }\]
FireKat97
  • FireKat97
now that you have found h(x) and -h(x) what do you notice
steve816
  • steve816
oooooh silly mistake, so it is ODD!
FireKat97
  • FireKat97
yup :D
steve816
  • steve816
THanks for the help
FireKat97
  • FireKat97
no problem
ytrewqmiswi
  • ytrewqmiswi
ฏ๎๎๎๎๎๎๎๎๎๎๎๎๎๎๎๎๎๎๎๎๎๎๎๎๎๎๎๎๎๎๎๎๎๎๎๎๎๎๎๎๎๎๎๎๎๎๎๎๎๎๎๎๎๎๎๎๎๎๎๎๎๎๎๎๎๎๎๎๎๎๎๎๎๎๎๎๎๎๎๎๎๎๎๎๎๎๎ํํํํํํํํํํํํํํํํํํํํํ¯\_Ỏ̷͖͈̞̩͎̻̫̫̜͉̠̫͕̭̭̫̫̹̗̹͈̼̠̖͍͚̥͈̮̼͕̠̤̯̻̥̬̗̼̳̤̳̬̪̹͚̞̼̠͕̼̠̦͚̫͔̯̹͉͉̘͎͕̼̣̝͙̱̟̹̩̟̳̦̭͉̮̖̭̣̣̞̙̗̜̺̭̻̥͚͙̝̦̲̱͉͖͉̰̦͎̫̣̼͎͍̠̮͓̹̹͉̤̰̗̙͕͇͔̱͕̭͈̳̗̭͔̘̖̺̮̜̠͖̘͓̳͕̟̠̱̫̤͓͔̘̰̲͙͍͇̙͎̣̼̗̖͙̯͉̠̟͈͍͕̪͓̝̩̦̖̹̼̠̘̮͚̟͉̺̜͍͓̯̳̱̻͕̣̳͉̻̭̭̱͍̪̩̭̺͕̺̼̥̪͖̦̟͎̻̰_Ỏ̷͖͈̞̩͎̻̫̫̜͉̠̫͕̭̭̫̫̹̗̹͈̼̠̖͍͚̥͈̮̼͕̠̤̯̻̥̬̗̼̳̤̳̬̪̹͚̞̼̠͕̼̠̦͚̫͔̯̹͉͉̘͎͕̼̣̝͙̱̟̹̩̟̳̦̭͉̮̖̭̣̣̞̙̗̜̺̭̻̥͚͙̝̦̲̱͉͖͉̰̦͎̫̣̼͎͍̠̮͓̹̹͉̤̰̗̙͕͇͔̱͕̭͈̳̗̭͔̘̖̺̮̜̠͖̘͓̳͕̟̠̱̫̤͓͔̘̰̲͙͍͇̙͎̣̼̗̖͙̯͉̠̟͈͍͕̪͓̝̩̦̖̹̼_/¯ค้้้้้้้้้้้้้้้้้้้้้้้้้้้้้้้้้้้้้้้้้้้้้้้้้้้้้้้้้้้้้้้้้้้้้้้้้้้้้้้้้้้้้้้้้้้้้

Looking for something else?

Not the answer you are looking for? Search for more explanations.