Differentiating : Differentiate A=l*w with respect to w

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Differentiating : Differentiate A=l*w with respect to w

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

how does it end up as \[A=w*l\] \[\frac{ dA }{ dw }=w*\frac{ dl }{ dw }+l\] Where did that +l come from?
by the product rule
dA/dw = w* dL /dw + d(w)/dw * L dA/dw = w* dL /dw + 1 * L

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

l is a function of w
thanks!
you have to assume l is a function of w for that to make sense. otherwise you would end with dA/dw = L * 1, since L is a constant with respect to w
yes
can you please also explain what happens here \[4r^2=l^2+w^2\] the model answers show that 4r^2 differentiates to zero
again i am differentiating with respect to w

Not the answer you are looking for?

Search for more explanations.

Ask your own question