• anonymous
Find an equation of the line that is tangent to the graph of f and parallel to the given line. Function Line f(x) = 2x^2 2x − y + 5 = 0
  • Stacey Warren - Expert
Hey! We 've verified this expert answer for you, click below to unlock the details :)
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
  • jamiebookeater
I got my questions answered at in under 10 minutes. Go to now for free help!
  • IrishBoy123
the point is not to find the intersection of the curve and line rather it is to find a **new line** which: (A) is a tangent line to f(x); and (B) runs parallel to 2x − y + 5 = 0 this means solving \(f'(x) = m\) where m is the slope of the line 2x − y + 5 = 0. this should lead to a point \( (a, 2a^2)\) on the new line. then finish off by using point \((a,2a^2)\) & slope m to solve \(y = mx + c\) for the new line

Looking for something else?

Not the answer you are looking for? Search for more explanations.