anonymous
  • anonymous
Use the rules of differentiation to find the derivative of the function y=.7x=3cosx
Calculus1
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
check your statement.
anonymous
  • anonymous
what do you mean?
anonymous
  • anonymous
y=.7x=3cos x

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
is it .7x=3cos x or .7x-3cosx
anonymous
  • anonymous
it is y = .7x = 3cosx
anonymous
  • anonymous
to me it is not correct. can you tell me the answer so that i can check if there is any change in statement?
anonymous
  • anonymous
the answer isnt given
anonymous
  • anonymous
can you try a different one and i can figure out the process?
anonymous
  • anonymous
\[\frac{ dy }{ dx }=.7=-3 \sin x\]
anonymous
  • anonymous
how would i do it for y= \[3\div \sqrt[4]{x}-7sinx\]
anonymous
  • anonymous
\[y=\frac{ 3 }{ x ^{\frac{ 1 }{ 4 }} }-7 \sin x=3x ^{\frac{ -1 }{ 4 }}-7 \sin x\] \[\frac{ d }{ dx }\left( x^n \right)=nx ^{n-1}\] \[\frac{ d }{ dx }\sin x=\cos x\]
anonymous
  • anonymous
\[\frac{ dy }{ dx }=3*\left( -\frac{ 1 }{ 4 } \right)x ^{\frac{ -1 }{ 4 }-1}-7\cos x\] ?
anonymous
  • anonymous
okay thank you
anonymous
  • anonymous
yw

Looking for something else?

Not the answer you are looking for? Search for more explanations.