blackstreet23
  • blackstreet23
Write down, but do not evaluate, an integral for the area of this shaded region.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
blackstreet23
  • blackstreet23
1 Attachment
TheCatMan
  • TheCatMan
im not that advanced in school yet i cant help here sorry
TheCatMan
  • TheCatMan
@whpalmer4 can you help

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
|dw:1442977155087:dw| This means the upper half of this region can be given by the double integral \[\int_0^{\pi/4}\int_0^{\cos2 t}r\,dr\,dt=\frac{1}{2}\int_0^{\pi/4}\cos^2t\,dt\] How might you adjust the limits to account for the bottom half as well?
blackstreet23
  • blackstreet23
i dont get it
blackstreet23
  • blackstreet23
why pi/4?
blackstreet23
  • blackstreet23
@SithsAndGiggles
blackstreet23
  • blackstreet23
@Shalante
blackstreet23
  • blackstreet23
@pooja195
anonymous
  • anonymous
Your curve is defined by the function \(r(t)=\cos2t\). When \(t=\dfrac{\pi}{4}\), you have \[r\left(\frac{\pi}{4}\right)=\cos\frac{2\pi}{4}=\cos\frac{\pi}{2}=0\] (You can check that \(r(t)\neq0\) for values of \(t\) between \(0\) and \(t=\dfrac{\pi}{4}\).)|dw:1443051824798:dw| As \(t\) increases from \(0\) to \(\dfrac{\pi}{4}\), the curve is traced out in the direction indicated by the arrows.
blackstreet23
  • blackstreet23
Thanks a lot !!! you are awesome :D

Looking for something else?

Not the answer you are looking for? Search for more explanations.