bleuspectre
  • bleuspectre
Simplify (3x^3y^4)^2/(6x^5y^3)(x^3y^2)^4 1/x^7y^3 3/2x^11y^3 3x^11y^3/2 9x^6/y^3
Algebra
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Nnesha
  • Nnesha
familiar with the exponent rules ?
bleuspectre
  • bleuspectre
Not much :/
Nnesha
  • Nnesha
alright exponent rules \[\huge\rm (ab)^m =a^mb^m\] numbers/variables in the parentheses raised by m power when we multiply same bases we should `add` exponents \[\huge\rm x^m \times x^n=x^{m+n}\] and when we divide same base , `subtract` their exponents \[\huge\rm \frac{ x^m }{ x^n }=x^{m-n}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Nnesha
  • Nnesha
\[\huge\rm \frac{ \color{ReD}{(3x^3y^4)^2}}{(6x^5y^3)(x^3y^2)^4}\] start with first exponent rule i posted above
Nnesha
  • Nnesha
\[\huge\rm {(3x^3y^4)^2} = ??\]
bleuspectre
  • bleuspectre
Would it be (3x^5y^6)?
bleuspectre
  • bleuspectre
I'm not good at math :/
Nnesha
  • Nnesha
multiply the exponents
Nnesha
  • Nnesha
you will be one day
Nnesha
  • Nnesha
exponent rules \[\huge\rm (a^1b^1)^m =a^{1 \times m}b^{1 \times m}\] numbers/variables in the parentheses raised by m power according to this rule \[\huge\rm {(3x^3y^4)^2} = 3^3 x^{3 \times2}y^{4 \times3}\] every number/variable in the parentheses raised by 2 power multiply the exponents
bleuspectre
  • bleuspectre
3^3x^6y^12
Nnesha
  • Nnesha
sorry there is a typo \[\huge\rm {(3x^3y^4)^2} = 3^2 x^{3 \times2}y^{4 \times3}\] 3 to the 2 power not 3
bleuspectre
  • bleuspectre
Ok
Nnesha
  • Nnesha
the power tells us how many times we should multiply the base 3^2 = 3 times 3
bleuspectre
  • bleuspectre
Ok
Nnesha
  • Nnesha
ugh typo sorry there is a typo \[\huge\rm {(3x^3y^4)^2} = 3^2 x^{3 \times2}y^{4 \times2}\] 3 to the 2 power not 3 and y^4 times 2 not 3 now simplify that
bleuspectre
  • bleuspectre
\[(3x ^{3}y ^{4})^{2} = 3^{2}x ^{6}y ^{8}\]
Nnesha
  • Nnesha
yes right what about 3^2 = ?
bleuspectre
  • bleuspectre
9
Nnesha
  • Nnesha
yes right so \[\huge\rm \frac{ \color{ReD}{9x^6y^8}}{(6x^5y^3)(x^3y^2)^4}\] now apply the same exponent rule for (x^3y^2)^4
bleuspectre
  • bleuspectre
Would i combine them?
Nnesha
  • Nnesha
apply the exponent rule just like we did for the numerator
bleuspectre
  • bleuspectre
Because I got \[x ^{12}y ^{8}\]
bleuspectre
  • bleuspectre
would I multiply the 4 to the other one too?
Nnesha
  • Nnesha
no bec 4 is power of x^3 y^2 so that's it for this part \[\huge\rm \frac{ \color{black}{9x^6y^8}}{(6x^5y^3)x^{12}y^{8}}\] you can remove the parentheses from (6x^5y^3) bec there isn't any exponent outside the parentheses \[\huge\rm \frac{ \color{black}{9x^6y^8}}{6x^5y^3x^{12}y^{8}}\] now apply the 2nd exponent rule ~when we multiply same bases we should `add` exponents \[\huge\rm x^m \times x^n=x^{m+n}\]
bleuspectre
  • bleuspectre
\[6x ^{17}y ^{11}\]
Nnesha
  • Nnesha
nice \[\huge\rm \frac{ \color{black}{9x^6y^8}}{6x^{17}y^{11}}\] reduce the fraction 9/6 and apply the exponent rule when we divide same base , `subtract` their exponents \[\huge\rm \frac{ x^m }{ x^n }=x^{m-n}\]
bleuspectre
  • bleuspectre
3x^11y^3/2
Nnesha
  • Nnesha
hmm top exponent `minus` bottom exxponents so `6-17` = ?
bleuspectre
  • bleuspectre
oh -11 and -3
Nnesha
  • Nnesha
yes right now we need to change negative to positive exponent \[\huge\rm x^{-m}=\frac{ 1 }{ x^m }\] to convert negative to positive exponent u should flip the fraction , when you flip it the sign of the exponent would change
bleuspectre
  • bleuspectre
So 3/2x^11y^3
Nnesha
  • Nnesha
looks good
bleuspectre
  • bleuspectre
Thank you so much!
Nnesha
  • Nnesha
np good work you just need to practice more on this stuff then you will be an expert at exponent rules
bleuspectre
  • bleuspectre
I will keep practicing, thank you again.
Nnesha
  • Nnesha
o^_^o

Looking for something else?

Not the answer you are looking for? Search for more explanations.