(Introductory Real Analysis) I'm trying to prove that the product of a bounded sequence and a sequence that converges to zero, itself converges to zero. I have the basic idea to start but don't understand some of the work my Professor did. Could someone help?

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

(Introductory Real Analysis) I'm trying to prove that the product of a bounded sequence and a sequence that converges to zero, itself converges to zero. I have the basic idea to start but don't understand some of the work my Professor did. Could someone help?

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

\[\text{Given}\ x_n \rightarrow 0, \ |y_n| \leq M,\]\[\text{Prove that:} \ x_ny_n \longrightarrow 0\]
\[\text{Given} \ x_n \rightarrow 0, \]\[(\forall \lambda > 0)(\exists \ J \in N)(\forall n>J), \ \ \ |x_n-c|<\lambda\]\[(\exists \ M > 0)(\forall n \in N), \ \ \ |y_n|\leq M\]
Applying the above to our problem: \[|x_n - 0|<\lambda\]\[|x_n|<\lambda\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

My confusion is here: \[(\exists \ J \ \epsilon \ N)(\forall n > J), \ \ \ |x_n|<\frac{\varepsilon}{M}\]
How does that last part come about? @Zarkon @phi
  • phi
you have \[ (\forall \lambda > 0)(\exists \ J \in N)(\forall n>J), \ \ \ |x_n-c|<\lambda \] and that is true for all lambda's it looks like they decided to let lambda be epsilon/M .
I had to move on, but I'd love to come back to this question sometime for my own sake, I frankly still don't get it.

Not the answer you are looking for?

Search for more explanations.

Ask your own question