Show that for all integer n >0, there exists a prime p such that n < p =< n!+1 Please, help

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Show that for all integer n >0, there exists a prime p such that n < p =< n!+1 Please, help

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

this is an induction proof, right?
I am not sure about that, but if it helps, why not, right?
I can prove the LHS and the middle like Let p is an arbitrary prime, then (p, 1) =1. By Bezouth theorem, in the sequence \(\{pn+1\}_{n=1}^\infty \) there are infinite many prime, hence we always have a prime under that form pn +1 Surely, with integer n>0, n < pn +1. But not sure about the far right.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

really sorry loser, i am crap at this pure math stuff; but i did find Bertrand's Postulate: for every \(n > 1\), here is always at least one prime p such that: \[n < p < 2n\] interesting stuff:-)
Hey, is it not that it is done? since 2n < n! = 1*2*3*....*n
And the book said Bertrand could not produce a proof \(\implies\) I cannot either. :)
@IrishBoy123 , please, tell me |dw:1443050900999:dw|
|dw:1443050992998:dw|
i/2
i would say does not converge
"really sorry loser i am crap at this pure math stuff" <-- sameeeeeeeeeeeeee
can we take that as an infinite GP with common ratio=-1
|dw:1443051096482:dw|
Since I have to prove \(sin (z) = \sum_{k=0}^\infty \dfrac{(-1)^k z^{2k+1}}{(2k+1)!}\)
I end up with that i but cannot take it down to (-1)^k
Let me post my proof. \(sin z = \dfrac{1}{2}(e^{iz}-e^{-iz} =\dfrac{1}{2}\sum_{n=0}^\infty (\dfrac{(iz)^n}{n!}-\dfrac{(-iz)^n}{n!})\)
factor i^n z^n out, we get \(sin z = (1/2) \sum_{n=0}^\infty (1-(-1)^n) (\dfrac{i^nz^n}{n!})\)
\[i + i^3 + i^5 + i^7 + ...\] \[= i( 1+ i^2 + i^4 + i^6 + ...)\] \[= i( 1+(-1) + (1) + (-1) + ...)\] does not converge
1-(-1)^n = o if n even 1-(-1) ^n =2 if n odd hence, we take if n odd only, so that n = 2k +1 replace all \(sin z = \sum_{k=0}^\infty \dfrac{i^{2k+1}z^{2k+1}}{(2k+1)!}\)
Now, my question on i^(2k+1) = i^(2k)*i = (-1)^k *i I can't get rid of that i. so that the proof is not done. :(
\( i^{(2k+1)} = i^{(2k)}*i = (-1)^k *i\) yes
oh, I got my mistake!! \(sin z = \dfrac{e^{iz}-e^{-iz}}{2i}\) that cancel out with my i.
Thanks a lot, friends. Thanks for being here so that I am not alone with my problem.
hehe :D
you mean \[sin z = \dfrac{1}{2\color{red}i}(e^{iz}-e^{-iz} =\dfrac{1}{2\color{red}i}\sum_{n=0}^\infty (\dfrac{(iz)^n}{n!}-\dfrac{(-iz)^n}{n!})\]
yes

Not the answer you are looking for?

Search for more explanations.

Ask your own question