Empty
  • Empty
Given a number n, what is the smallest interval containing it with k other numbers all mutually relatively prime?
Mathematics
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

thadyoung
  • thadyoung
حَوّامتي مُمْتِلئة بِأَنْقَلَيْسون
ganeshie8
  • ganeshie8
If I am interpreting the problem correctly, when \(n\) is prime, is the interval \((-n+1, ~2n-1)\) ?
Empty
  • Empty
I don't know, I have found a different answer so I'm not sure how you've interpreted it. I guess the way I was imagining it, for k=2 there will be 3 points including n: \[\gcd(n,n+a)=1\]\[\gcd(n,n+b)=1\]\[\gcd(n+a,n+b)=1\] where a and b can be any positive or negative integer, as long as it minimizes the size of the set containing n.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Empty
  • Empty
My answer could be totally wrong, how did you come up with your answer? This is just a question that sorta came up while I was doing my own personal research into some stuff haha.
Empty
  • Empty
Maybe I should cut to the chase and say what I'm specifically looking for: I want to, given any number n, be able to find as many numbers that are as small of distance as possible but all contain at least a different prime that the others don't have. I think this is kind of strange, but if you think of exponents on primes as forming a vector space with each prime a different dimension, then every prime is a linearly independent dimension. From this I am planning on using Gram-Schmidt orthogonalization with the gcd to remove any common factors they might share. So I think my phrasing of the question is not quite right earlier since although 3 and 6 are not relatively prime, they are 'linearly independent' in the sense that we can form any multiple of 2 or 3 using these through multiplication and division.
anonymous
  • anonymous
so for any prime p, there is k=p-2,(numbers which are relatively prime with p) right ? this is the trivial case
anonymous
  • anonymous
for a number n! there is 0 numbers that relatively prime with it im considering the interval (1,n!) and in p case the interval is (1,p) is that what ur asking for ?

Looking for something else?

Not the answer you are looking for? Search for more explanations.