mortonsalt
  • mortonsalt
Hello! I was wondering if someone can take a look at this question? (I'll post it below.)
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
mortonsalt
  • mortonsalt
The following limit represents the derivative of some function f at some number a. \[\lim_{h \rightarrow 0}\frac{(1+h)^{10} -1}{h}\] State f and a.
zepdrix
  • zepdrix
We have the limit definition of a derivative:\[\large\rm f'(a)=\lim\limits_{h\to0}\frac{f(a+h)-f(a)}{h}\] If you match up the pieces with the formula:\[\large\rm f(a+h)=(1+h)^{10},\qquad\qquad f(a)=1\]
zepdrix
  • zepdrix
So ummm

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

zepdrix
  • zepdrix
\[\large\rm f(\color{orangered}{a+h})=(\color{orangered}{1+h})^{10},\qquad\qquad f(a)=1\]If you look at this orange part here, you might be able to figure out what your a value is.
zepdrix
  • zepdrix
\[\large\rm f(\color{orangered}{a+h})=(\color{orangered}{1+h})^{10}\]And then if you choose to evaluate this at x, instead of a+h,\[\large\rm f(\color{orangered}{x})=(\color{orangered}{x})^{10}\]you should be able to see what your function is. See if this matches up with f(a)=1 though.
zepdrix
  • zepdrix
Hopefully that helps :U Stay salty friend.
mortonsalt
  • mortonsalt
Sorry this took forever for me to check again. Thank you so much for your help @zepdrix

Looking for something else?

Not the answer you are looking for? Search for more explanations.