• anonymous
I would like to know if I am understanding the concept of limits and derivatives limx→1 (x^2+3x−4) / (x^2+8x−9) =(limx→1(x^2+3x−4)) / (limx→1 (x^2+8x−9)) This is false because the first part equals 1/2 and the second part is indeterminate If f′(2) exists, then then the limit limx→2f(x) is f(2) This is true because there is continuity. If limx→3f(x)=∞ and limx→3g(x)=∞, then limx→3[f(x)−g(x)]=0 This is true because of the limit law of quotient. If limx→2[f(x)g(x)] exists, then the limit is f(2)g(2) This is true because of the limit law of product.
Mathematics
• Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Looking for something else?

Not the answer you are looking for? Search for more explanations.