haleyelizabeth2017
  • haleyelizabeth2017
Solve the system \(|y| \ge 2\) and \(|x| \le 1\) by graphing. Please no direct answers :)
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
jim_thompson5910
  • jim_thompson5910
hint: \[\Large |y| \ge 2 \text{ is the same as } -2 \le y \le 2\]
haleyelizabeth2017
  • haleyelizabeth2017
Oh!
haleyelizabeth2017
  • haleyelizabeth2017
Thank you for clarifying that!

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

jim_thompson5910
  • jim_thompson5910
oh sorry, I mixed up the signs I was focusing on x
jim_thompson5910
  • jim_thompson5910
\[\Large |x| \le 1 \text{ is the same as } -1 \le x \le 1\]
jim_thompson5910
  • jim_thompson5910
Rule: \[\Large |x| \le k \text{ is equivalent to } -k \le x \le k\] where k is any positive number
haleyelizabeth2017
  • haleyelizabeth2017
Ah hah
jim_thompson5910
  • jim_thompson5910
Rule: \[\Large |x| \ge k \text{ is equivalent to } x \ge k \text{ or } x \le -k\] where k is any positive number
zzr0ck3r
  • zzr0ck3r
they want you to graph it
jim_thompson5910
  • jim_thompson5910
using that second rule, \[\Large |y| \ge 2\] breaks down into \[\Large y \ge 2 \text{ or } y \le -2\]
jim_thompson5910
  • jim_thompson5910
So you need to graph the following \[\Large -2 \le x \le 2, \ y \ge 2, \ y \le -2\]
haleyelizabeth2017
  • haleyelizabeth2017
Okay so the solution is where they intersect/overlap?
jim_thompson5910
  • jim_thompson5910
correct
haleyelizabeth2017
  • haleyelizabeth2017
1 Attachment
haleyelizabeth2017
  • haleyelizabeth2017
Thank you so very much!
jim_thompson5910
  • jim_thompson5910
looks good so far

Looking for something else?

Not the answer you are looking for? Search for more explanations.