If a circle has a circumference of C, what is the area of the circle in terms of C? A=πC A=C24π A=2Cπ A=2C2

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

If a circle has a circumference of C, what is the area of the circle in terms of C? A=πC A=C24π A=2Cπ A=2C2

Geometry
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

The area is A=pi*r^2, and the Circumference is C=2*pi*r the ansers have pi in them, so solve both Area and Circumference for the radius r
then you can set them equal to each other since they will both equal r
\[r = \sqrt{\frac{ A }{ \pi }}\] and \[r = \frac{ C }{ 2\pi }\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Set the two right sides equal and solve for A
k
Is their a correct choice? I think we need\[A=(C ^{2})/(4\pi)\]Am I missing something??
Probably the 2nd option has a typo.

Not the answer you are looking for?

Search for more explanations.

Ask your own question