anonymous
  • anonymous
Explain how you can use a straightedge and a compass to construct an angle that is both congruent and adjacent to a given angle
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
@Owlcoffee
anonymous
  • anonymous
hello please help
anonymous
  • anonymous
@sweetburger

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
@love10129151
anonymous
  • anonymous
@AaronAndyson
anonymous
  • anonymous
:(
anonymous
  • anonymous
hello
anonymous
  • anonymous
waiting........
carlyleukhardt
  • carlyleukhardt
wow hes a slow typer
Owlcoffee
  • Owlcoffee
To construct an adyacent angle to another, and for it to be congruent we have to begin by tking the compass and drawing an arch we can call "\(\beta\) " in such a way that it intersects the given angle, let's call it \(\alpha\), in two points \(A\) and \(B\) which is any radius pretty much, let's now say that the two semilines whose origin lies on the vertice of angle \(\alpha\), are the semilines (l) and (r) respectively therefore point \(A\) lies on the semiline (l) and point \(B\) lies on the semiline (r). With that said, we will take point \(B\) as a center, and radius \(AB\) and draw a semicircle we can call \(\delta\) on the line (r) in such way that it doesn't intersect the semiline (l). Now, let's extend arch \(\beta\) and intersect it with arch \(\delta \) and it will define a new point \(C\) and this point will define another semiline (w) , that has it's origin on the vertex of angle \(\alpha \). Then semilines (r) and (w) will define an angle congruent and adyacent to \(\alpha\).
Owlcoffee
  • Owlcoffee
Sorry, I had to think this through.

Looking for something else?

Not the answer you are looking for? Search for more explanations.