jiteshmeghwal9
  • jiteshmeghwal9
Simplify:\[\iota \log \left( \frac{x-i}{x+i} \right)\]
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
jiteshmeghwal9
  • jiteshmeghwal9
@Callisto
jiteshmeghwal9
  • jiteshmeghwal9
@ganeshie8
IrishBoy123
  • IrishBoy123
.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

amilapsn
  • amilapsn
\[\Huge *\]
imqwerty
  • imqwerty
ok so we need to find the logarithm of a complex number of the form a+ib we can write \[a+ib=r(\cos \theta+i \sin \theta) =re^\left( i \theta \right)\] where\[r=\sqrt{a^2+b^2}\]\[\theta=\tan^{-1} \frac{ b }{ a }\] so we have \[a+ib=re^\left( i \theta \right)\]take log on both sides \[\log(a+ib)=\log(re^\left( i \theta \right))=\log(r)+\log(e^\left( i \theta \right))\]i took the base of logarithm as e :) so we get\[\log_{e}(a+ib)=\log_{e}(r)+i \theta=\log_{e}(\sqrt{a^2+b^2})+i \tan^{-1} \left( \frac{ b }{ a } \right)\] now we have i log((x-i)/(x+i)) =i[log(x-i)-log(x+i)] now we apply the results which we got above^ \[i[\log_{e}\sqrt{x^2+(-1)^2}]+i \tan^{-1} \left( \frac{ -1 }{ x} \right)-i[\log_{e}\sqrt{x^2+1^2]}-i \tan^{-1} \left( \frac{ 1 }{ x } \right)\] =\[i[\tan^{-1} \left( \frac{ -1 }{ x } \right)-\tan^{-1} \left( \frac{ 1 }{ x} \right)]\] :)
imqwerty
  • imqwerty
wait after the second last step i forgot to write the i which was outside the bracket so multiply that too \[i \left[ i \left[ \tan^{-1} \left( \frac{ -1 }{ x} \right)-\tan^{-1} \left( \frac{ 1 }{ x} \right) \right] \right]\]
IrishBoy123
  • IrishBoy123
bravo! \[= 2 \cot^{-1}x\]
imqwerty
  • imqwerty
(:
Astrophysics
  • Astrophysics
Nice one @imqwerty
imqwerty
  • imqwerty
haha thanks :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.