\(lim_{n\rightarrow \infty} |\dfrac{1}{a^{2n+1}|}=??\) Please, help

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

\(lim_{n\rightarrow \infty} |\dfrac{1}{a^{2n+1}|}=??\) Please, help

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

gotta be zero right?
denominator goes to \(\infty\) lickety split
This is what I got, but need the third party's opinion. |dw:1443275074358:dw|

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

oh i guess i didn't take in to account the possibility that \(a=1\) did i?
I don't feel good for the first one and the last one. They should be combined to make the logic firmly.
if \(a=1\) then it is identically 1
if \(0
and like you said if \(a>1\) it would be \(0\) because the denominator gets really big really fast
looks good to me!
|dw:1443275584269:dw|
Another question: \(lim_{n\rightarrow \infty} a^n z^n\) , what is difference if a is in Z and a is in C ?

Not the answer you are looking for?

Search for more explanations.

Ask your own question