help?

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

Find the value of the discriminant for each quadratic equation below. Show all steps needed to write the answer in simplest form, including substituting the values of a, b, and c in the discriminant formula. Then use the value to determine how many real number solutions each equation has. 5x^2 + x = 4
HI!!
Hey :)

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

start by setting it equal to zero go from \[5x^2 + x = 4\] to \[5x^2+x-4=0\]
\[\large \color{red}ax^2+\color{blue}bx+\color{green}c=0\] \[\huge \color{red}5x^2+\color{blue}1x+\color{green}{-4}=0\]
then as @risn said compute \[\huge \color{blue}b^2-4\times \color{red}a\times \color{green}c\]
D= 1 - 4 (1)(-4)?
nope
\(\color{red}a=\color{red}{5}\)
oh sorry. D = 1-4(5)(-4)
yeah that is right what do you get?
81?
as my final answer?
yeah me too
at the end of the question it asks us "Then use the value to determine how many real number solutions each equation has".
that is the answer to Show all steps needed to write the answer in simplest form, including substituting the values of a, b, and c in the discriminant formula.
ok two steps here 81 is positive, so there are two real solutions also 81 is a "perfect square" it is the square of 9 that means both solutions are rational numbers
oh ok! thank u so much! :)
in fact that means \[5x^2+x-4=0\] can be solved by factoring you get \[(5x-4)(x+1)=0\] so \[x=\frac{4}{5}\] or \[x=-1\]
\[\color\magenta\heartsuit\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question