Let S_n denote the group of all permutations of the set [n]={1,2,...,n}. A permutation sigma in S_n is called an involution if sigma^2 =1, where 1=(1) in S_n denotes the identity. Explicitly list all evolutions of S_1, S_2, S_3, S_4. Fore general n, show that a permutation 1 not equal to sigma in S_n is an involution if and only if sigma is a product of disjoint 2-cycles

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Let S_n denote the group of all permutations of the set [n]={1,2,...,n}. A permutation sigma in S_n is called an involution if sigma^2 =1, where 1=(1) in S_n denotes the identity. Explicitly list all evolutions of S_1, S_2, S_3, S_4. Fore general n, show that a permutation 1 not equal to sigma in S_n is an involution if and only if sigma is a product of disjoint 2-cycles

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

How do you feel about part a?
S_n are sufficiently simple for \(n\in\{1,\dots,4\}\) to manually list the involutions. an involution is essentially just a permutation that is its own inverse, i.e. it undoes itself when applied a second time
proving that involutions in S_n are precisely products of disjoint 2-cycles is easy enough in the product of disjoint 2-cycles => involution direction, since they tell you that all 2-cycles are involutions. it is slightly less easy to show the other direction, namely that an arbitrary involution is a product of disjoint 2-cycles

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Perhaps you can begin by considering for each of the sets of permutations S_1, S_2, S_3, S_4. \[ [1] = \{1\} \\ [2] = \{1,2\} \\ [3] = \{1,2,3\} \\ [4] = \{1,2,3,4\}.\] Then \[S_1 = \{1\} \\ S_2 = \{1,(1,2)\} \\ \vdots\]
I do not fully know how to complete part b
Do you recognize that disjoint cycles commute with one another? Suppose then we have a permutation \(\sigma\) that can be factored as a product of disjoint 2-cycles \(\sigma_1\cdots\sigma_n\). It follows then that $$\sigma^2=\sigma_1\cdots\sigma_n\sigma_1\cdots\sigma_n=\sigma_1^2\dots\sigma_n^2=e^n=e$$since 2-cycles are obviously involutions, i.e. \(\sigma_1^2=\sigma_2^2=\dots=\sigma_n^2=e\), the identity; since they are disjoint, we were able to commute the \(\sigma_1,\dots,\sigma_n\) so that they square to the identity
Okay, to find the converse do I assume a disjoint cycle and show that it is an involution?
yes, exactly
I am sorry but I am still confused with what you have written. Would you mind explaining it to me. Is that just one way or both ways of the proof.
that's only one way
Okay. SO that is saying that we have an involution sigma^2=(1) and leading to disjoint 2 cycles?
maybe it would help if you did it the other way too. S o I can see the entire picture
that is saying that a product of disjoint 2-cycles is an involution. to go the other way, suppose we have some permutation \(\sigma\). by cycle decomposition there is a more-or-less (i.e. up to commutativity) unique representation in products \(\sigma=\sigma_1\cdots\sigma_n\). if it's an involution we have \(\sigma^2=e\implies\sigma=\sigma^{-1}\) so $$\sigma_1\cdots\sigma_n=\sigma_n^{-1}\cdots\sigma_1^{-1}$$note the cycles are disjoint we can commute freely. do you see a way to deduce that \(\sigma_i=\sigma_i^{-1}\)
That makes more sense now. Thanks a ton!

Not the answer you are looking for?

Search for more explanations.

Ask your own question