anonymous
  • anonymous
Government regulations indicate that the total weight of cargo in a certain kind of airplane cannot exceed 330 kg. On a particular day a plane is loaded with 100 boxes of goods. If the weight distribution for individual boxes is normal with mean 3.2 kg and standard deviation 0.7 kg, what is the probability that the regulations will NOT be met (round to the nearest integer).
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Jhannybean
  • Jhannybean
@Astrophysics @zepdrix @ganeshie8
Jhannybean
  • Jhannybean
I think theres some kind of formula associated with standard deviation
ganeshie8
  • ganeshie8
\(\mu = 3.2\) \(\sigma=0.7\)

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

ganeshie8
  • ganeshie8
By central limit theorem, the sample parameters will be : \(\overline{x}=3.2\) \(s=\dfrac{\sigma}{\sqrt{n}} = \dfrac{0.7}{\sqrt{100}}=0.07\) use them to find \(P(\overline{x}\le 3.3)\)

Looking for something else?

Not the answer you are looking for? Search for more explanations.