Agent_A
  • Agent_A
Differential Equations problem. Solve the initial Value Problem: (see the given, below) I have the solution, and I know that we have to use integration by parts, but I'd like a better (clearer) solution, please. Just send me the whole thing. I want to see the way you solve it, in one run. Thanks!
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Agent_A
  • Agent_A
\[\frac{ dy }{ dt } = y + 2t\] \[y(0) = -2\]
ganeshie8
  • ganeshie8
As a start, multiply \(e^{-t}\) through out
ganeshie8
  • ganeshie8
\(\dfrac{ dy }{ dt } = y + 2t\) \(\dfrac{ dy }{ dt } -y = 2t\) \(\color{red}{e^{-t}}\dfrac{ dy }{ dt } - \color{red}{e^{-t}}y = \color{red}{e^{-t}}2t\) Now, do you notice anythign special about the left hand side ?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Jhannybean
  • Jhannybean
Can this form be defined as \(\dfrac{dy}{dt} - P\cdot y = Q\) ?
Jhannybean
  • Jhannybean
Oh I kind of see it now.
ganeshie8
  • ganeshie8
Yes, it's indeed a linear equation..
Astrophysics
  • Astrophysics
Note the integrating factor is \[e^{-t}\] now what happens when you take the derivative of this \[(e^{-t}y)'\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.