chillhill
  • chillhill
Find the first two terms of an arithmetic sequence if the sixth term is 21 and the sum of the first 17th terms is 0.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
mathstudent55
  • mathstudent55
Arithmetic sequence: a1 = a1 a2 = a1 + d a3 = a1 + 2d a4 = a1 + 3d a5 = a1 + 4d a6 = a1 + 5d The 6th term, a6, equal a1 + 5d. We know the 6th term is 21, so we get this equation: 21 = a1 + 5d a1 + 5d = 21 (Here is Eq. 1) Sum: Sn = [n(a1 + an)]/2 S17 = [17(a1 + a17)]/2 a17 = a1 + 16d S17 = [17(a1 + a1 + 16d)]/2 We are told that the sum of the first 17 term is 0, so we get the second equation. 0 = [17(a1 + a1 + 16d)]/2 0 = 17(2a1 + 16d)/2 0 = 17a1 + 136d 17a1 + 136d = 0 (Here is the 2nd equation) Now we solve these equations simultaneously: a1 + 5d = 21 (Eq. 1) 17a1 + 136d = 0 (Eq. 2) Multiply Eq. 1 by -17 and add to Eq. 2: 51d = -357 d = -7 a1 + 5(-7) = 21 a1 - 35 = 21 a1 = 56
mathstudent55
  • mathstudent55
a1 = 56 a2 = a1 + d a2 = 56 + (-7) = 49 a1 = 56 & a2 = 49
Jhannybean
  • Jhannybean
\[a_n = a_1+(n-1)d\]\[S_n = \frac{n(a_1+a_n)}{2}\] \[a_6 =a_1+(6-1)d =21 \implies \color{red}{21 = a_1+5d}\]\[S_{17} =\frac{17(a_1+\color{blue}{a_{17}})}{2} = 0\ \\ \qquad a_{17}=a_1 +(17-1)d \implies \color{blue}{a_{17} = a_1 +16d}\]\[S_{17} =\frac{17(a_1+a_1+16d)}{2}=0 \\ S_{17} =\frac{17(2a_1+16d)}{2}=0 \\ \qquad \implies \frac{17 \cdot 2(a_1+8d)}{2}=0 \\ \qquad \implies 17(a_1+8d)=0 \\ \qquad \implies a_1+8d = 0 \\ \qquad \implies \color{orange}{a_1 =-8d}\]We can use this to find d, then plug it into the red equation. \[\color{orange}{a_1=-8d} \implies \color{green}{d=-\frac{a_1}{8}}\]\[21=a_1+5\left(\color{green}{-\frac{a_1}{8}}\right)\]\[21=a_1-\frac{5a_1}{8}\qquad \implies 21=a_1\left(1-\frac{5}{8}\right) \qquad \implies 21 = \frac{3}{8}a_1\]\[\color{purple}{a_1=56}\]Now that we've found our first term, we can use that to find the difference, d, and then our second term using the formula for arithmetic sequence.\[\color{pink}{d=-\frac{a_1}{8} = -\frac{56}{8} = -7}\]\[a_2 =\color{purple}{ a_1}+(n-1)\color{pink}{d} \\ a_2=56+(2-1)(-7) \\ a_2=56-7 \\ \color{gold}{a_2=49}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

mathstudent55
  • mathstudent55
@Jhannybean That is beautiful. I'm almost in tears just looking at it!!! Just look at the use of colors!
imqwerty
  • imqwerty
looks like u got a color wand :D
Jhannybean
  • Jhannybean
I had to.... I confused myself otherwise
imqwerty
  • imqwerty
:)
imqwerty
  • imqwerty
i make circles on useful results nd info to note them ( ͡° ͜ʖ ͡°)

Looking for something else?

Not the answer you are looking for? Search for more explanations.