Find the first two terms of an arithmetic sequence if the sixth term is 21 and the sum of the first 17th terms is 0.

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Find the first two terms of an arithmetic sequence if the sixth term is 21 and the sum of the first 17th terms is 0.

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

Arithmetic sequence: a1 = a1 a2 = a1 + d a3 = a1 + 2d a4 = a1 + 3d a5 = a1 + 4d a6 = a1 + 5d The 6th term, a6, equal a1 + 5d. We know the 6th term is 21, so we get this equation: 21 = a1 + 5d a1 + 5d = 21 (Here is Eq. 1) Sum: Sn = [n(a1 + an)]/2 S17 = [17(a1 + a17)]/2 a17 = a1 + 16d S17 = [17(a1 + a1 + 16d)]/2 We are told that the sum of the first 17 term is 0, so we get the second equation. 0 = [17(a1 + a1 + 16d)]/2 0 = 17(2a1 + 16d)/2 0 = 17a1 + 136d 17a1 + 136d = 0 (Here is the 2nd equation) Now we solve these equations simultaneously: a1 + 5d = 21 (Eq. 1) 17a1 + 136d = 0 (Eq. 2) Multiply Eq. 1 by -17 and add to Eq. 2: 51d = -357 d = -7 a1 + 5(-7) = 21 a1 - 35 = 21 a1 = 56
a1 = 56 a2 = a1 + d a2 = 56 + (-7) = 49 a1 = 56 & a2 = 49
\[a_n = a_1+(n-1)d\]\[S_n = \frac{n(a_1+a_n)}{2}\] \[a_6 =a_1+(6-1)d =21 \implies \color{red}{21 = a_1+5d}\]\[S_{17} =\frac{17(a_1+\color{blue}{a_{17}})}{2} = 0\ \\ \qquad a_{17}=a_1 +(17-1)d \implies \color{blue}{a_{17} = a_1 +16d}\]\[S_{17} =\frac{17(a_1+a_1+16d)}{2}=0 \\ S_{17} =\frac{17(2a_1+16d)}{2}=0 \\ \qquad \implies \frac{17 \cdot 2(a_1+8d)}{2}=0 \\ \qquad \implies 17(a_1+8d)=0 \\ \qquad \implies a_1+8d = 0 \\ \qquad \implies \color{orange}{a_1 =-8d}\]We can use this to find d, then plug it into the red equation. \[\color{orange}{a_1=-8d} \implies \color{green}{d=-\frac{a_1}{8}}\]\[21=a_1+5\left(\color{green}{-\frac{a_1}{8}}\right)\]\[21=a_1-\frac{5a_1}{8}\qquad \implies 21=a_1\left(1-\frac{5}{8}\right) \qquad \implies 21 = \frac{3}{8}a_1\]\[\color{purple}{a_1=56}\]Now that we've found our first term, we can use that to find the difference, d, and then our second term using the formula for arithmetic sequence.\[\color{pink}{d=-\frac{a_1}{8} = -\frac{56}{8} = -7}\]\[a_2 =\color{purple}{ a_1}+(n-1)\color{pink}{d} \\ a_2=56+(2-1)(-7) \\ a_2=56-7 \\ \color{gold}{a_2=49}\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

@Jhannybean That is beautiful. I'm almost in tears just looking at it!!! Just look at the use of colors!
looks like u got a color wand :D
I had to.... I confused myself otherwise
:)
i make circles on useful results nd info to note them ( ͡° ͜ʖ ͡°)

Not the answer you are looking for?

Search for more explanations.

Ask your own question