Determine if the set is a vector space subspace. If the set is not a subspace identify which of the axioms fails.

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Determine if the set is a vector space subspace. If the set is not a subspace identify which of the axioms fails.

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

there are three things you need to check is the zero vector there, so for example in question a) does the zero function have x intercepts at multiples of \(\pi\) and the answer is yes, since it is identically zero
second is the sum of two vectors there i.e. if \(f,g\in C^{\infty}\) with zeros at integer multiples of \(\pi\) does \(f+g\) have zeros at integer multiples of \(\pi\) again the answer is yes, since by definition \((f+g)(x)=f(x)+g(x)\) so if \(f,g\) is zero at multiples of \(\pi\) does does \(f+g\)

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

finally are scalar multiples there, i.e. if \(f\) has zeros at integer multiples of \(\pi\) does \(cf\) have zeros at integer multiples of \(\pi\) and again the answer is yes, since multiplying a function by a constant does not change the zeros
repeat for each b) is zero an odd function? is the sum of two odd functions odd? is a constant multiple of an odd function odd? etc

Not the answer you are looking for?

Search for more explanations.

Ask your own question