Show that there are no vectors "u" and "v" in R^3 such that ||u||=1, ||v||=2, and =3.

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Show that there are no vectors "u" and "v" in R^3 such that ||u||=1, ||v||=2, and =3.

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

Suppose yes, then \(cos (u, v) =\dfrac{}{||u||||v||}= \dfrac{3}{2}\) does it make sense? You give out the conclusion.
I honestly don't follow that way.
why not? \(-1\leq cos (\theta) \leq 1\) That is the restriction of a cos function, and the result is out of the range of cos. Hence the "supposing" does not hold .

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

I use contradiction method and it is the easiest way to use all of the given information. But if you don't get it. I am sorry.
Thank you for the attempt, and I don't doubt what you have done. I just think there has to be a different way to show it. Can you think of a different way to do it?
@oldrin.bataku
$$\langle v,u\rangle=\|u\|\|v\|\cos\theta=2\cos\theta$$however \(\cos\theta\) has a maximum value of \(1\) so \(2\cos\theta\le 2\), yet \(3\not\le 2\) so there can be no such vectors
geometrically, we have that \(\langle v,u\rangle\le\|v\|\|w\|\), and \(3\not\le2\)
Is there a way to expand the dot product to show this?

Not the answer you are looking for?

Search for more explanations.

Ask your own question