How many 6-digit numbers contain exactly 4 different digits ?

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

How many 6-digit numbers contain exactly 4 different digits ?

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

\(\large \color{black}{\begin{align} & \normalsize \text{ How many 6-digit numbers contain exactly 4 different digits}\ ? \hspace{.33em}\\~\\ & a.)\ 4536 \hspace{.33em}\\~\\ & b.)\ 294840 \hspace{.33em}\\~\\ & c.)\ 191520 \hspace{.33em}\\~\\ & d.)\ \normalsize \text{none of these} \hspace{.33em}\\~\\ \end{align}}\)
just find the arrangement of 6-digit number and then subtract the arrangement in which they have same 4 digits
9*9*8*7*100-9*9*8*7

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

yup
but the amswer given is b.)
so you will get b sure
did you find the total arrangement of 6-digit number huh ?
And yet again, my answer is almost the same. It exceeds the thing only by a little.
I'm pretty sure I've never ever gotten an exact answer on your questions.
See, I counted the first case of zero wrongly.
answer is b.)294840
Here it is redone: If zeroes do not repeat. Case 1.1: Where three digits repeat.\[\binom{5}{1}\times \binom{9}{1}\times \binom{5}{3} \times 8 \times 7 \] Case 1.2: Where two digits repeat.\[\binom{5}{1}\times \binom{9}{2}\times \binom{5}{4}\times \frac{4!}{2!\cdot 2!}\times 7\]
And I get the exact answer (b) 294840 now.
http://www.wolframalpha.com/input/?i=9*20*8*7*6+%2B+%289+choose+2%29*%286+choose+4%29*6*7*6+%2B+5*9*10*56+%2B+5*%289+choose+2%29*5*42+%2B+10*9*6*56+%2B+10*72*7
First the numbers where zeroes do not occur. Case 1: 3 of one digit, and the rest three places unique. \[\binom{9}{1}\times \binom{6}{3}\times 8 \times 7 \times 6\]Case 2: two of one digit, two of another, the rest two unique.\[\binom{9}{2}\times \binom{6}{4}\times \frac{4!}{2!\cdot 2!} \times 7 \times 6 \] Now the numbers where zeroes *do* occur. Case 1: They do not repeat. Case 1.1: Where three digits repeat.\[\binom{5}{1}\times \binom{9}{1}\times \binom{5}{3} \times 8 \times 7 \]Case 1.2: Where two digits repeat.\[\binom{5}{1}\times \binom{9}{2}\times \binom{5}{4}\times \frac{4!}{2!\cdot 2!}\times 7\] Case 2: They do repeat once.\[\binom{5}{2}\times \binom{9}{1}\times \binom{4}{2}\times 8 \times 7 \]Case 3: They repeat thrice.\[\binom{5}{3}\times9\times8\times 7\]
I deleted the previous reply. Here's the revised one.

Not the answer you are looking for?

Search for more explanations.

Ask your own question