chrisplusian
  • chrisplusian
Show that there are no vectors "u" and "v" in R^3 such that ||u||=1, ||v||=2, and =3.
Mathematics
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

thomas5267
  • thomas5267
\[ \langle u,v\rangle=\|u\|\|v\|\cos(\theta)\\ \text{Maximum of }\cos(\theta)\text{ is }1\\ \max(\langle u,v\rangle)=\|u\|\|v\|=2 \]
anonymous
  • anonymous
^^ same answer I gave the last time he posted this yesterday
anonymous
  • anonymous
alternatively we can work with components. i'll sketch an approach down below: consider \(u=(u_1,u_2,u_3),v=(v_1,v_2,v_3)\) so $$\|u\|=1\implies u_1^2+u_2^2+u_3^2=1\\\|v\|=2\implies v_1^2+v_2^2+v_3^2=4$$ now we look at \(\langle u,v\rangle\): $$\langle u,v\rangle=u_1v_1+u_2v_2+u_3v_3$$consider: $$(u_1v_1+u_2v_2+u_3v_3)^2=u_1^2v_1^2+u_2^2v_2^2+u_3^2v_3^2+2(u_1u_2v_1v_2+u_1u_3v_1v_3+u_2u_3v_2v_3)\\(u_1^2+u_2^2+u_3^2)(v_1^2+v_2^2+v_3^2)=u_1^2v_1^2+u_2^2v_2^2+u_3^2v_3^2\\\qquad\qquad\qquad\qquad\qquad\qquad\qquad+u_2^2(v_1^2+v_3^2)+u_1^2(v_2^2+v_3^2)+u_3^2(v_1^2+v_2^2)\\(u_1^2+u_2^2+u_3^2)(v_1^2+v_2^2+v_3^2)-(u_1v_1+u_2v_2+u_3v_3)^2=\dots\ge 0\\\implies (u_1^2+u_2^2+u_3^2)(v_1^2+v_2^2+v_3^2)\ge (u_1v_1+u_2v_2+u_3v_3)^2\\\implies \|u\|^2\|v\|^2\ge\langle u,v\rangle^2\\\implies \|u\|\|v\|\ge|\langle u,v\rangle|$$

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

chrisplusian
  • chrisplusian
I did not mean to re-post this question I apologize

Looking for something else?

Not the answer you are looking for? Search for more explanations.