anonymous
  • anonymous
here are three geometric series. a) 2+1+0.5+... b) 75+30+12+... c) 240-60+15-3.75+.... 1) For each of the series i) find the common ratio r ii) use GDC to calculate the values of S10, S15, S20. Write full values that you see on your GDC screen 2) Do you notice any patterns? why do you think this is happening 3) Now use your GDC to calculate the values of S50 for each series. Do you think your calculator is correct? Explain why or why not
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
What is GDC?
anonymous
  • anonymous
grafic calculator
ParthKohli
  • ParthKohli
\[S(n) = a\frac{1-r^n}{1-r }\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
so how do you answer the queston
anonymous
  • anonymous
you can divide the second term by the first to find r. \[r=\frac{a_2}{a_1}\] So for the first one r = 1/2
ParthKohli
  • ParthKohli
\[S(10) = a\frac{1 - r^{10}}{1-r }\]
ParthKohli
  • ParthKohli
\[S(15) = a\frac{1-r^{15}}{1-r}\]
ParthKohli
  • ParthKohli
\[S(20) = a\frac{1 - r^{20}}{1-r}\]
anonymous
  • anonymous
ok thansks

Looking for something else?

Not the answer you are looking for? Search for more explanations.