A community for students.

Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing


  • one year ago

Find all possible values of k so that (-1,2), (-10,5), (-4,k) are the vertices of a right triangle.

  • This Question is Open
  1. anonymous
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 0

    I'm borrowing this answer from another post, but it is completely correct. :)

  2. anonymous
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 0

    Here's one way to think about it. Let's call the points A (-1,2), B (-10,5), and C (-4, k). If these three points are to make a right triangle, then that triangle must have a hypotenuse. There are only three possibilities for the hypotenuse: the line AB, the line BC, or the line AC. If AB is the hypotenuse, then AC and CB are the legs. If BC is the hypotenuse, then AB and AC are the legs. If AC is the hypotenuse, then AB and BC are the legs. In order for these sides to make up a right triangle, the sides of the triangle must satisfy the Pythagorean theorem. Since you know the coordinates of the points A, B, and C, you can use the distance formula (actually, the square of the distance, since that is what enters into the Pythagorean theorem) to write three sets of equations (one for each of the possibilities), then solve those equations for k. I'll do one of them and leave the two others to you: Let AC be the hypotenuse. Then: (AB)^2 is (-1-(-10))^2 +(2-5)^2 (BC)^2 is (-10-(-4))^2 + (5-k)^2 (AC)^2 is (-1-(-4))^2 + ((2-k)^2 Use the Pythagorean formula for this triangle to find that k = 23. In the second case, you again get a linear equation for k, and find that k = -7. In the third case, you get a quadratic equation for k, and find that k = 8 or k = -1. So the possible values of k are -1, -7, 8, or 23. Another approach would be to say that since the triangle is supposed to be a right triangle, the legs should be perpendicular. Since you can find the slopes of each of the lines which make up those legs, the demand that the lines be perpendicular (that the product of their slopes be -1) would again give you equations to solve for k.

  3. Not the answer you are looking for?
    Search for more explanations.

    • Attachments:

Ask your own question

Sign Up
Find more explanations on OpenStudy
Privacy Policy

Your question is ready. Sign up for free to start getting answers.

spraguer (Moderator)
5 → View Detailed Profile

is replying to Can someone tell me what button the professor is hitting...


  • Teamwork 19 Teammate
  • Problem Solving 19 Hero
  • You have blocked this person.
  • ✔ You're a fan Checking fan status...

Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.

This is the testimonial you wrote.
You haven't written a testimonial for Owlfred.