marigirl
  • marigirl
Rate of change -Differentiation An inverted cone with a base area of 2500pi mm^2 and height of 300m is slowly being filled with water. Water is being poured in at a rate of 350 mm^3/s. At what rate is the height of the water changing when the water is 100mm from the top of the inverted cone?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
marigirl
  • marigirl
I think: We are to find out: \[\frac{ dh }{ dt } \] We know \[\frac{ dV }{ dt }=350\]
marigirl
  • marigirl
|dw:1443476761216:dw|
marigirl
  • marigirl
Volume of cone: \[V=\frac{ 1 }{ 3 }\pi r^2h\] Volume of this cone:\[V=\frac{ 2500 }{ 3 }h\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

phi
  • phi
use "similar triangles" to write r in terms of h
phi
  • phi
from the area of the base you find r=50 and you have this |dw:1443477912255:dw|
phi
  • phi
\[ V=\frac{ 1 }{ 3 }\pi r^2h \\ V=\frac{ 1 }{ 3 }\pi \frac{h^2}{36}h \\ V= \frac{\pi}{108} h^3 \] now use implicit differentiation
marigirl
  • marigirl
\[\frac{ dv }{ dh }=36 \pi h^2\] \[\frac{ dh }{ dt }=\frac{ dv }{ dt }\times \frac{ dh }{ dv }\] am i on the right track
marigirl
  • marigirl
then \[\frac{ dh }{ dt }=350 \times \times \frac{ 1 }{ 36 \pi h^2 }\] and then sub in h=100
phi
  • phi
I would take the derivative of each variable with respect to t on the left side you get dv/dt on the right side you get \[\frac{\pi}{108} \frac{d}{dt} h^3 \] which is \[ \frac{\pi}{108} 3 h^2\frac{d}{dt}h\] so the equation is \[ \frac{dV}{dt}= \frac{\pi}{36} h^2 \frac{dh}{dt} \]
phi
  • phi
when the water is 100mm from the top of the inverted cone in the formula h is the height from 0 up to 300 100 mm from the top corresponds to h= 200 mm
phi
  • phi
Your approach works except that this ***\( \frac{ dv }{ dh }=36 \pi h^2 \)*** should read \[ \frac{dV}{dh}= \frac{\pi}{36} h^2\]
marigirl
  • marigirl
then sub in h=200....
phi
  • phi
yes
marigirl
  • marigirl
Thanks heaps!

Looking for something else?

Not the answer you are looking for? Search for more explanations.