marigirl
  • marigirl
Need clarification please Topic: Related rates of change- Differentiation show that: \[\frac{ d }{ dx }(\frac{ v^2 }{ 2 })=\frac{ d^2x }{ dt^2 }\] Where x represents the distance travelled in t seconds by a particle moving with velocity v This is what i have so far:
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
marigirl
  • marigirl
\[\frac{ dx }{ dt }=v\] Differentiate this with respect to time and get \[\frac{ d^2x }{ dt^2 }=\frac{ dv }{ dt } \]
marigirl
  • marigirl
we know: \[\frac{ dv }{ dt }=\frac{ dv }{ dx }\times \frac{ dx }{ dt }\]
marigirl
  • marigirl
which is \[\frac{ dv }{ dt }=\frac{ dv }{ dx } \times v\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

marigirl
  • marigirl
im lost now
anonymous
  • anonymous
By the chain rule, the left hand side is \[\frac{d}{dx}\left[\frac{v^2}{2}\right]=\frac{1}{2}\left(2v\frac{dv}{dx}\right)=v\frac{dv}{dx}\]which you showed is equal to \(\dfrac{dv}{dt}\).
marigirl
  • marigirl
I am not sure how you for the left side of the equation you wrote above
anonymous
  • anonymous
Do you know what the chain rule is?
marigirl
  • marigirl
i think the v and t are confusing me because i keep writing x and y. i might try doing it again

Looking for something else?

Not the answer you are looking for? Search for more explanations.