zmudz
  • zmudz
Assume that \( 1a_1+2a_2+\cdots+na_n=1, \) where the \(a_j\) are real numbers. As a function of \(n\), what is the minimum value of \(1a_1^2+2a_2^2+\cdots+na_n^2?\) I tried 1/5 and then 5, but none of them work. Please help! Thanks!
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
I'm pretty sure you can use Lagrange multipliers to solve this. Let \(S_1=\sum\limits_{j=1}^nja_j\) and \(S_2=\sum\limits_{j=1}^nj{a_j}^2\). You're looking to minimize \(S_2\) with respect to the constraint \(S_1\). The Lagrangian is given by \[\mathcal{L}(a_1,\ldots,a_n,\lambda)=S_2+\lambda S_1\] Take the gradient and set equal to \(0\): \[\left.\begin{align*} \frac{\partial}{\partial a_1}\left[S_2+\lambda S_1\right]&=2a_1+\lambda\\[2ex] \frac{\partial}{\partial a_2}\left[S_2+\lambda S_1\right]&=4a_2+2\lambda\\[2ex] &\vdots\\ \frac{\partial}{\partial a_n}\left[S_2+\lambda S_1\right]&=2na_n+n\lambda\\[2ex] \frac{\partial}{\partial \lambda}\left[S_2+\lambda S_1\right]&=S_1 \end{align*}\right\}=0\quad(\text{each})\] The first \(n\) equations tell you that \(a_j=-\dfrac{\lambda}{2}\). Plugging this into the original constraint, you get \[S_1=\sum_{j=1}^n ja_j=-\frac{\lambda}{2}\sum_{j=1}^n j=-\frac{\lambda n(n+1)}{4}=1\]or \(\lambda=-\dfrac{4}{n(n+1)}\). This means \(S_2\) is minimized when \[a_j=-\frac{\lambda}{2}=\frac{2}{n(n+1)}\] Compute the sum: \[\begin{align*}\sum_{j=1}^n j{a_j}^2&=\sum_{j=1}^nj\left(\frac{2}{n(n+1)}\right)^2\\[1ex] &=\frac{4}{n^2(n+1)^2}\sum_{j=1}^nj\\[1ex] &=\frac{4}{n^2(n+1)^2}\cdot\frac{n(n+1)}{2}\\[1ex] &=\frac{2}{n(n+1)}\end{align*}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.