• tacotime
Friction Question: someone pushes a box with a mass of 11.2 kg with a constant speed of 3.5m/s. The kinetic friction is .2. If the person stops pushing how far does the box slide before coming to rest?
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
  • IrishBoy123
when it hs stopped, all the kinetic energy of the box will have been lost by friction to heat etc ie the work done by friction in retarding the box will equal the box's initial KE you can say \(\frac{1}{2}mv^2 = F_f.x = \mu mgx\) or \(x = \dfrac{\frac{1}{2}mv^2 }{\mu mg}= \frac{v^2}{2\mu g}\) the equations of motion will give the same result as they are essentially the same thing if you start with \(v^2 = u^2 + 2ax\) where final velocity v = 0 you have \(x = -\frac{u^2}{2a}\) from Newton's Law \(F = ma = -\mu mg \implies a = - \mu g \) so \(x = \frac{u^2}{2\mu g}\) - same result except we used u rather than v for the box's initial velocity

Looking for something else?

Not the answer you are looking for? Search for more explanations.