anonymous
  • anonymous
Explain how the graph of each given fucntion is a transformation of the graph of y=x^2 a.y=x^2 -5 b.y=-2x^2 c. y= (x-5)^2 d. y=(-3x)^2
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
ShadowLegendX
  • ShadowLegendX
There is an alteration in each of the functions, diverging from the original. But Iʻm afraid I donʻt know how to properly answer this, even though I have an idea, idk...I donʻt want to answer this even tho I am unsure, sorry
anonymous
  • anonymous
:( ohh.... but for a isn't the answer y=x^2 undergoes a shift down 5?
anonymous
  • anonymous
@Jhannybean HI!!!

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Jhannybean
  • Jhannybean
Bear with me for a minute.
anonymous
  • anonymous
Okay! :) thank u
Jhannybean
  • Jhannybean
Shifting left: \(f(x+b) \implies \text{graph shifts b units left}\) shifting up/down: \(f(x) +b ~, \qquad f(x) -b \implies \text{graph moves up b units or down b units}\) Shifting right: \(f(x-b) \implies \text{graph shifts b units to the right}\) Inverting: \(-f(x) \implies \text{ graph that is right side up flips upside down}\) \(\qquad \qquad \qquad \qquad \text{ or for odd functions flips across the y-axis }\)
anonymous
  • anonymous
oooohhhh!!
anonymous
  • anonymous
so.. a. will be shifiting down 5???
Jhannybean
  • Jhannybean
That's right
anonymous
  • anonymous
for b im still not sure
anonymous
  • anonymous
@Jhannybean Can u help me more...?? Im still not sure

Looking for something else?

Not the answer you are looking for? Search for more explanations.