Diana.xL
  • Diana.xL
http://prntscr.com/8m4yb0
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Diana.xL
  • Diana.xL
@ganeshie8
Diana.xL
  • Diana.xL
@phi
phi
  • phi
do you see the 5x term? take the 5 from that term, divide it by 2 \[ \frac{5}{2}\] then square it \[ \frac{25}{4} \] add that to both sides of the equation

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

phi
  • phi
what do you get?
Diana.xL
  • Diana.xL
my answer would be b?
phi
  • phi
what do you get after adding 25/4 to both sides of the equation?
phi
  • phi
you should get \[ x^2 +5x + \frac{25}{4}= -1 + \frac{25}{4}\]
phi
  • phi
the left side is a perfect square (that is why you add 25/4) it is \[ \left(x+ \frac{5}{2}\right)^2 = -1 + \frac{25}{4} \] I would write the -1 as -4/4 \[ \left(x+ \frac{5}{2}\right)^2 = \frac{-4}{4} + \frac{25}{4} \]
phi
  • phi
on the right side you have two fractions with the same denominator, so you can add the tops
Diana.xL
  • Diana.xL
21/4
phi
  • phi
yes \[ \left(x+ \frac{5}{2}\right)^2 = \frac{21}{4} \] if you take the square root (of both sides to keep it equal) we get rid of the square on the left side \[ \left(x+ \frac{5}{2}\right)= \pm \sqrt\frac{21}{4} \\ x+ \frac{5}{2}= \pm\frac{\sqrt{21}}{2} \] now add -5/2 to both sides
phi
  • phi
you get \[ x= \frac{-5 \pm \sqrt{21}}{2} \]

Looking for something else?

Not the answer you are looking for? Search for more explanations.