anonymous
  • anonymous
Please help! Design a circuit using NAND gates that detects the “above” condition for two 2-bit values. That is, given two 2-bit variables x and y, F(x,y) = 1 when the unsigned integer value of x is less than the unsigned integer value of y. a) Give a truth table for the output of the circuit, F. b) Find a minimal sum of products for F. c) use either a PLA or PAL.
Computer Science
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
okay, so let's write a truth table for our F(x,y) = 1 $$\begin{array}{c|c} x&y&F\\ \hline 00 & 00 & 0 \\ 00 & 01 & 1\\ 00 & 10 & 1 \\ 00 & 11 & 1\\ 01 & 00 & 0\\ 01 & 01 & 0\\ 01 & 10 & 1 \\ 01 & 11 & 1\\ 10 & 00 & 0\\ 10 & 01 & 0\\ 10 & 10 & 0\\ 10 & 11 & 1\\ 11 & 00 & 0\\ 11 & 01 & 0\\ 11 & 10 & 0\\ 11 & 11 & 0 \end{array}$$
anonymous
  • anonymous
we can write a sum-of-products from the truth table easily (hint: look at all the columns that yield \(F(x,y)=1\)), if we split \(x,y\) into individual inputs for each bits -- \(x_1, x_2, y_1, y_2\) so: $$(x_1'x_2'y_1'y_2)+(x_1'x_2'y_1y_2')+(x_1'x_2'y_1y_2)+(x_1'x_2y_1y_2')+(x_1'x_2y_1y_2)+\dots$$ and then minimizing the expression is easy once you have ita ll out

Looking for something else?

Not the answer you are looking for? Search for more explanations.