anonymous
  • anonymous
Let f(x) = 4x2 + x + 1 and g(x) = x2 – 2. Find g(f(x)). Show each step of your work.
Algebra
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
@Baby_Bear69
anonymous
  • anonymous
is my work right? F(x)=4x^2+x+1 G(x)=x^2-2 G(f(x))=(4x^2+X+1)^2-2 G(f(x))=16X^4+X^2+1^2+2.4X^2+X+2.4X^2+1+2X-2 G(f(x))= 16X^4 +8X^3+9x^2+2X-1
anonymous
  • anonymous
@mayankdevnani

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

mayankdevnani
  • mayankdevnani
\[\large \bf gof(x)=g(f(x))\] Simply put function f(x) into function g(x) in place of variable.
anonymous
  • anonymous
so 4x^2+x+1=x^2-2
mayankdevnani
  • mayankdevnani
nope Lemme tell you
mayankdevnani
  • mayankdevnani
\[\large \bf f(x)=4x^2+x+1\] \[\large \bf g(x)=x^2-2\] \[\large \bf g(f(x))=(4x^2+x+1)^2-2\] in additional , \[\large \bf f(g(x))=4(x^2-2)^2+(x^2-2)+1\]
mayankdevnani
  • mayankdevnani
hope you understand ! @Motown117
anonymous
  • anonymous
ok i see where i went wrong
mayankdevnani
  • mayankdevnani
:D
anonymous
  • anonymous
thank you for the clarification and the help
mayankdevnani
  • mayankdevnani
your welcome :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.