solve sqrt(y)dx+(1+x)dy=0

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

solve sqrt(y)dx+(1+x)dy=0

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

sqrt(y)/dy=-(1+x)/dx
then integrate
\[\sqrt{y} dx +(1+x)dy=0\] You can start off by dividing both sides by "dx": \[\frac{ \sqrt{y} dx +(1+x)dy }{ dx }=\frac{ 0 }{ dx }\] \[\sqrt{y}\frac{ dx }{ dx }+\frac{ dy }{ dx }(1+x)=0\] \[\frac{ \sqrt{y} }{ dy }=\frac{ -(1+x) }{ dx }\] Now, integrating both sides: \[\int\limits \sqrt{y} \frac{ 1 }{ dy }= \int\limits -(1+x)\frac{ 1 }{ dx }\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

how can i integrate that
\(\large\color{black}{ \displaystyle \sqrt{y}dx+(1+x)dy=0 }\) \(\large\color{black}{ \displaystyle \sqrt{y}dx=-(1+x)dy }\) \(\large\color{black}{ \displaystyle \sqrt{y}\frac{dx}{dy}=-(1+x) }\) \(\large\color{black}{ \displaystyle \frac{1}{-(1+x)}\frac{dx}{dy}= \frac{1}{\sqrt{y}}}\) integrate both sides with respect to y.
left side is same just no dx/dy right
when you integrate the left side with respect to y, the *dy*s are going to cancel.
|dw:1443641216073:dw|
hen solve for y. Algebraic task...

Not the answer you are looking for?

Search for more explanations.

Ask your own question