Please help me with this question!

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Please help me with this question!

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

|dw:1443649213389:dw|
whats the area
\[x ^{2}+3x-40 ft\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

ft ^2
The area of any triangle is calculated by: \[A _{\triangle}=\frac{ b.h }{ 2 }\] This means, base time height divided by two. Since in the excercise we are given the area \(x^2+3x-40\) and we know that the base is \(x+8\), we can then use the formula above by replacing the data: \[x^2+3x-40=\frac{ (x+8)(h) }{ 2 }\] Now, it's just a matter to solve for "h".
So, \[(x-5)(x+8)=\frac{ (x+8)(h) }{ 2 }\] Now, what do i do.
Well, now try to isolate that h on any side of the "=" sign.
does the (x+8) cancel out?

Not the answer you are looking for?

Search for more explanations.

Ask your own question