A community for students.
Here's the question you clicked on:
 0 viewing
haleyelizabeth2017
 one year ago
Airplanes are often used to drop water on forest fires in an effort to stop the spread of the fire. The time t it takes the water to travel from height h to the ground can be derived from the equation h=1/2 * gt^2 where g is the acceleration due to gravity (32feet/second^2). Determine the equation that will give time as a function of height.
Please don't just put the equation. Instead, I'd love to learn how to do this so explain please :)
haleyelizabeth2017
 one year ago
Airplanes are often used to drop water on forest fires in an effort to stop the spread of the fire. The time t it takes the water to travel from height h to the ground can be derived from the equation h=1/2 * gt^2 where g is the acceleration due to gravity (32feet/second^2). Determine the equation that will give time as a function of height. Please don't just put the equation. Instead, I'd love to learn how to do this so explain please :)

This Question is Closed

Owlcoffee
 one year ago
Best ResponseYou've already chosen the best response.1Whenever we have two variables and one depends on the other, that is for instance "x" and "y". And one of these variables depends on the other and follows a certain pattern which is express mathematically, for instance: \[y=x^3+5x\] We can see that we will acquire different values of "y" as "x" changes values, so we denote it as \(y=f(x)\), this means that "y" is a variable that depends on the value that "x" takes. So we can deduce from this simple observation, that the "y" variable is dependant while the "x" variable is independant, this is what is called a "functional" relationship and also we can call it function "f" that is dependant on the value of "x": \[f(x)=\phi (x)\] Now that we have established what a function is, in a very compressed matter... We can observe the function given on the excercise: \[h=\frac{ 1 }{ 2 }g.t^2\] By the definition I stated to you, we can see that this mathematical pattern is expressed as a function of "t", so, we can express it as \(h= f(t) \). But what happens if we want to change the roles? Well, let's begin by working the grounds, since we want to make the variable "t" as dependant variable and "h" as independant variable, we will deduce that "t" will be a function "h": \(t=f(h)\) so, we can replace it: \[h=\frac{ 1 }{ 2 }g.t^2 \rightarrow h=\frac{ 1 }{ 2 }g.f(h)^2\] so, if we solve for "f(h)" we will obtain the function in question: \[h=\frac{ 1 }{ 2 }g.f(h)^2 \rightarrow f(h)^2=2h.g\] \[f(h)=\sqrt{2h.g}\]

Owlcoffee
 one year ago
Best ResponseYou've already chosen the best response.1oh, sorry, I messed up on one step: \[h=\frac{ 1 }{ 2 }g.f(h)^2 \rightarrow 2h=gf(h)^2\] \[f(h)^2=\frac{ 2h }{ g }\] \[\therefore f(h)=\sqrt{\frac{ 2h }{ g }}\]

haleyelizabeth2017
 one year ago
Best ResponseYou've already chosen the best response.0Shouldn't we plug in 32 for g?

Owlcoffee
 one year ago
Best ResponseYou've already chosen the best response.1You can do it if so desire, but since "g" is a constant, it does not hurt to leave it just as "g".

haleyelizabeth2017
 one year ago
Best ResponseYou've already chosen the best response.0Thank you very much :)

Owlcoffee
 one year ago
Best ResponseYou've already chosen the best response.1if you have any further questions, ask away.

haleyelizabeth2017
 one year ago
Best ResponseYou've already chosen the best response.0Okay :) let me look through it :)

haleyelizabeth2017
 one year ago
Best ResponseYou've already chosen the best response.0This next one just requires me to find out how many seconds it will take for water to hit the ground, so let me try it first :)

haleyelizabeth2017
 one year ago
Best ResponseYou've already chosen the best response.0Using the formula you explained how to get, I plugged in 1024 for the height and 32 for g, and I got that it takes 8 seconds. :)

haleyelizabeth2017
 one year ago
Best ResponseYou've already chosen the best response.0I'll open a new post for the next one :)
Ask your own question
Sign UpFind more explanations on OpenStudy
Your question is ready. Sign up for free to start getting answers.
spraguer
(Moderator)
5
→ View Detailed Profile
is replying to Can someone tell me what button the professor is hitting...
23
 Teamwork 19 Teammate
 Problem Solving 19 Hero
 Engagement 19 Mad Hatter
 You have blocked this person.
 ✔ You're a fan Checking fan status...
Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.