Medal and Fan! Which product represents the solution to the system?

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Medal and Fan! Which product represents the solution to the system?

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

Do you know how to multiple matrices?
yes, this is my answer
1 Attachment

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

yes that is correct, however, thats a lil complicated how you've done it.
oh wait, you have just used the inverse formula, i see.
i wouldn't leave it in this form , i would simplify this further
because a solution to the system involves values for x and y, here you have just simply solved the inverse.
\[AX=B\] \[A ^{-1}AX=A ^{-1} B\] \[IX=A ^{-1}B\] \[X=A ^{1}B\]
that should be A^(-1) in the last part sorry.
you have solved A^(-1)|dw:1443662042771:dw|
my answer is correct?
i would simplify it further \[X=\left[\begin{matrix}2 & -1/2 \\ -1 & 1/2\end{matrix}\right]\left(\begin{matrix}3 \\ 2\end{matrix}\right)=\left(\begin{matrix}5 \\ -2\end{matrix}\right)\]
here, this simplification says that the solution to this system is x=5, y=-2
so you don't get confused, \[X=\left(\begin{matrix}x \\ y\end{matrix}\right)=\left(\begin{matrix}5 \\ 2\end{matrix}\right)\]
im not sure if you could see the first part of it but theres a 1/2 in fornt of it
i did, i just simplified it into the matrix
\[\left[\begin{matrix}2 & -1/2 \\ -1& 1/2\end{matrix}\right]=\frac{ 1 }{ 2 }\left[\begin{matrix}4 & -1 \\ -2 & 1\end{matrix}\right]\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question