blackstreet23
  • blackstreet23
Suppose that the position vector for a particle is given as a function of time by vector r (t) = x(t)i + y(t)j, with x(t) = at + b and y(t) = ct2 + d, where a = 1.30 m/s, b = 1.35 m, c = 0.129 m/s2, and d = 1.14 m. (a) Calculate the average velocity during the time interval from t = 2.05 s to t = 3.95 s.
Physics
katieb
  • katieb
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

blackstreet23
  • blackstreet23
blackstreet23
  • blackstreet23
blackstreet23
  • blackstreet23

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

IrishBoy123
  • IrishBoy123
\(\vec r(t) =< 1.3t + 1.35, \; 0.129t^2 + 1.14>\) \(\vec r(3.95) - \vec r(2.05) = ???\) [that is the difference in positions at these two times] \(|\vec r(3.95) - \vec r(2.05)| = ???\) [that is the actual distance apart at these two times, use Pythagoreas] \(\bar v = \dfrac{|\vec r(3.95) - \vec r(2.05)|}{3.95 - 2.05}\) [average velocity is distance travelled divided by time]

Looking for something else?

Not the answer you are looking for? Search for more explanations.