anonymous
  • anonymous
Using shell method find the volume of the solid bounded by y=1+x^1/2 ,y=2,y=1,x=1 when it revolve around x=1?
Mathematics
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

triciaal
  • triciaal
|dw:1443682301707:dw|
FireKat97
  • FireKat97
|dw:1443682610450:dw| This is the volume you want to find
anonymous
  • anonymous
Ok,then what shall I do?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

FireKat97
  • FireKat97
so now, imagine taking a shell, |dw:1443683814127:dw|
FireKat97
  • FireKat97
|dw:1443683890033:dw|
FireKat97
  • FireKat97
|dw:1443683966585:dw| so lets take the thickness of the shell to be dx, the radius, to be x and the height to be f(x), so height is 1 + x^1/2
FireKat97
  • FireKat97
|dw:1443684519400:dw|
anonymous
  • anonymous
I have just started understanding this:-D
FireKat97
  • FireKat97
:D I'm glad. Now that we have "opened" the shell up it is easier to write up the equation for the volume, so try coming up with the integral
anonymous
  • anonymous
So I think the radious will =1-x And the height=y-1 Am I right?

Looking for something else?

Not the answer you are looking for? Search for more explanations.