Loser66
  • Loser66
Find all value of \(i^i\) Please, help.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
\[i=e^{\frac{\pi}{2}i}\]
Loser66
  • Loser66
then?
freckles
  • freckles
\[i^i=(e^{\frac{\pi}{2}i})^i\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

freckles
  • freckles
hint i^2=-1
Loser66
  • Loser66
i*i in exponent is not i+i =2i, right?
freckles
  • freckles
i*i is i^2 not i+i
freckles
  • freckles
\[(a^b)^c=a^{ b \cdot c} \text{ not } a^{b+c}\]
Loser66
  • Loser66
I don't know how to go on this way. To me, I let \(z = i^i , then~~ e^ {logz} = e^{logi^i} = e^{ilogi}\)
Loser66
  • Loser66
That is \(z = e^{ilogi}\)
freckles
  • freckles
doing what satellite says gives us exp(-pi/2)
Loser66
  • Loser66
Then let ilog i = w, hence \(z = e^w\) and solve it as usual to get some thing like i^i = {z : ......}
Loser66
  • Loser66
Ok, got it
Zarkon
  • Zarkon
\[e^{i\theta}=\cos(\theta)+i\sin(\theta)\] \[e^{i\frac{\pi}{2}}=\cos\left(\frac{\pi}{2}\right)+i\sin\left(\frac{\pi}{2}\right)=i\]
Loser66
  • Loser66
Yes, I got that part @Zarkon @satellite73 @freckles @Jhannybean But my Prof wants me to follow the way he taught in class. :) All I need is the steps to make sure that I don't miss any detail.
Loser66
  • Loser66
If I go that way, then \(i^i = e^ {-\pi/2}\) , then how to put + 2kpi in?
freckles
  • freckles
\[e^{i \theta}=e^{i (\theta+2 n \pi)}\]
freckles
  • freckles
\[(e^{(\frac{\pi}{2}+2n \pi) i})^i=e^{-(\frac{\pi}{2}+2n \pi)}\]
Loser66
  • Loser66
Actually, my Prof wants me to do something like logz = log|z| + iarg (z) + 2ikpi
Loser66
  • Loser66
Hence, I tried to follow that way by making it so complicated like that :)
anonymous
  • anonymous
we can do it that way too if you like
anonymous
  • anonymous
@Loser66

Looking for something else?

Not the answer you are looking for? Search for more explanations.