El_Arrow
  • El_Arrow
stuck on this surface area problem
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
El_Arrow
  • El_Arrow
y= (x^(2)/4)-(ln(x)/2) 1
El_Arrow
  • El_Arrow
@freckles @zepdrix @SithsAndGiggles @mathmath333
El_Arrow
  • El_Arrow
okay so i got the set up done |dw:1443761100902:dw|

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

El_Arrow
  • El_Arrow
when i would use u-substitution i would get |dw:1443761202970:dw|
El_Arrow
  • El_Arrow
so my question is what do i do with the -(1/4)?
IrishBoy123
  • IrishBoy123
\(\large y= \frac{x^2}{4}-\frac{ln x}{2}\) ?? if so \(\sqrt{1 + y'^2 } = \sqrt{1 + (\frac{x}{2}-\frac{1}{2x})^2} = \sqrt{\frac{x^2}{4}+\frac{1}{4x^2} +\frac{1}{2}} =\frac{x}{2}+\frac{1}{2x}\)
El_Arrow
  • El_Arrow
so thats it i dont do any u-substitution? please answer back @IrishBoy123
IrishBoy123
  • IrishBoy123
if you are happy with the algebra i have shown, you go straight to the integral. i think it's fine but you should check for yourself. one small correction, which **makes no difference** here, but which might matter elsewhere, is that \(\sqrt{z^2} = |z|\) so i should have said: \[\sqrt{1 + y'^2 } = \sqrt{1 + (\frac{x}{2}-\frac{1}{2x})^2} = \sqrt{\frac{x^2}{4}+\frac{1}{4x^2} +\frac{1}{2}} =\sqrt{\left( \frac{x}{2}+\frac{1}{2x} \right)^2} = \left| \frac{x}{2}+\frac{1}{2x} \right|\] and here: \(\large \left| \frac{x}{2}+\frac{1}{2x} \right| = \frac{x}{2}+\frac{1}{2x} \) because \(x>0\)
IrishBoy123
  • IrishBoy123
here that is again, this time fitting on the page... \[\sqrt{1 + y'^2 } = \sqrt{1 + (\frac{x}{2}-\frac{1}{2x})^2} = \sqrt{\frac{x^2}{4}+\frac{1}{4x^2} +\frac{1}{2}} \\ =\sqrt{\left( \frac{x}{2}+\frac{1}{2x} \right)^2} = \left| \frac{x}{2}+\frac{1}{2x} \right|\]
El_Arrow
  • El_Arrow
so then what do i put for the x @IrishBoy123
El_Arrow
  • El_Arrow
oh so i just multiply the x with the answer we got inside the square root
IrishBoy123
  • IrishBoy123
yes \[ S = 2 \pi \int\limits_{1}^{2} x \left( \frac{x}{2}+\frac{1}{2x} \right) \; dx = \dots \]
El_Arrow
  • El_Arrow
alright thanks @IrishBoy123

Looking for something else?

Not the answer you are looking for? Search for more explanations.